Isotopic evidence against North Pacific Deep Water formation during late Pliocene warmth (2024)

References

  1. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article CAS Google Scholar

  2. Rafter, P. A. et al. Global reorganization of deep-sea circulation and carbon storage after the last ice age. Sci. Adv. 8, eabq5434 (2022).

    Article CAS Google Scholar

  3. Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

    Article CAS Google Scholar

  4. Jacobel, A. W. et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230, 106065 (2020).

    Article Google Scholar

  5. Anderson, R. F. et al. Deep‐sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    Article CAS Google Scholar

  6. Ford, H. L. et al. Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nat. Geosci. 15, 658–663 (2022).

    Article CAS Google Scholar

  7. Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate 16, 2095–2123 (2020).

    Google Scholar

  8. McClymont, E. L. et al. Lessons from a high-CO2 world: an ocean view from 3 million years ago. Climate 16, 1599–1615 (2020).

    Google Scholar

  9. Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).

    Article CAS Google Scholar

  10. Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    Article CAS Google Scholar

  11. Burls, N. J. et al. Simulating Miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1). Paleoceanogr. Paleoclimatol. 36, e2020PA004054 (2021).

    Article Google Scholar

  12. Huber, M. & Caballero, R. The early Eocene equable climate problem revisited. Climate 7, 603–633 (2011).

    Google Scholar

  13. Burls, N. J. & Fedorov, A. V. Simulating Pliocene warmth and a permanent El Niño-like state: the role of cloud albedo. Paleoceanography 29, 893–910 (2014).

    Article Google Scholar

  14. Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).

    Article Google Scholar

  15. Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).

    Article CAS Google Scholar

  16. Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    Article Google Scholar

  17. Schmittner, A. et al. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanography 32, 512–530 (2017).

    Article Google Scholar

  18. Kroopnick, P. M. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res. A 32, 57–84 (1985).

    Article CAS Google Scholar

  19. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article CAS Google Scholar

  20. Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) - an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    Article Google Scholar

  21. Galbraith, E. D., Kwon, E. Y., Bianchi, D., Hain, M. P. & Sarmiento, J. L. The impact of atmospheric CO2 on carbon isotope ratios of the atmosphere and ocean. Glob. Biogeochem. Cycles 29, 307–324 (2015).

    Article CAS Google Scholar

  22. Eggleston, S. & Galbraith, E. D. The devil’s in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings in a general circulation model. Biogeosciences 15, 3761–3777 (2018).

    Article CAS Google Scholar

  23. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    Article CAS Google Scholar

  24. Lynch‐Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air–sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Glob. Biogeochem. Cycles 9, 653–665 (1995).

    Article Google Scholar

  25. Mackensen, A., Hubberten, H.-W., Bickert, T., Fischer, G. & Fütterer, D. K. The δ13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean deep water: implications for glacial ocean circulation models. Paleoceanography 8, 587–610 (1993).

    Article Google Scholar

  26. Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).

    Article Google Scholar

  27. Feng, H., Tian, J., Lyle, M., Westerhold, T. & Wilkens, R. High resolution benthic foraminiferal δ18O and δ13C records at ODP site 807 over the past 5 Ma, Ontong Java Plateau: evolution of North Pacific ventilation, Pliocene to Holocene. Glob. Planet. Change 217, 103945 (2022).

    Article Google Scholar

  28. Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat. Geosci. 2, 434–438 (2009).

    Article CAS Google Scholar

  29. Talley, L. D. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article Google Scholar

  30. Chen, T., Liu, Q. & Wang, X. Enhanced direct ventilation in the subarctic Pacific Ocean during 3.5–2.73 Ma: new evidence of elemental results from ODP site 882. Glob. Planet. Change 215, 103867 (2022).

    Article Google Scholar

  31. Dowsett, H. J. & Ishman, S. E. Middle Pliocene planktonic and benthic foraminifers from the subarctic North Pacific: sites 883 and 887. Proc. ODP Sci. Res. 145, 141–156 (1992).

  32. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).

    Article CAS Google Scholar

  33. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar

  34. Kawabe, M. & Fujio, S. Pacific Ocean circulation based on observation. J. Oceanogr. 66, 389–403 (2010).

    Article Google Scholar

  35. Peterson, C. D. & Lisiecki, L. E. Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka). Climate 14, 1229–1252 (2018).

    Google Scholar

  36. Jian, Z. et al. Changes in deep Pacific circulation and carbon storage during the Pliocene–Pleistocene transition. Earth Planet. Sci. Lett. 605, 118020 (2023).

    Article CAS Google Scholar

  37. de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Sci. Rep. 10, 14–21 (2020).

    Google Scholar

  38. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    Article CAS Google Scholar

  39. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 882. Proc. ODP Init. Rep. https://doi.org/10.2973/odp.proc.ir.145.106.1993 (1993).

  40. Haug, G. H., Maslin, M. A., Sarnthein, M., Stax, R. & Tiedemann, R. Evolution of northwest Pacific sedimentation patterns since 6 Ma (site 882). Proc. ODP Sci. Res. 145, 293–314 (1995).

    CAS Google Scholar

  41. Marlowe, I. T., Brassell, S. C., Eglinton, G. & Green, J. C. Long chain unsaturated ketones and esters in living algae and marine sediments. Org. Geochem. 6, 135–141 (1984).

    Article CAS Google Scholar

  42. Bolton, C. T. et al. Glacial–interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones. Earth Planet. Sci. Lett. 295, 401–411 (2010).

    Article CAS Google Scholar

  43. Haug, G. H. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005).

    Article CAS Google Scholar

  44. Studer, A. S. et al. Enhanced stratification and seasonality in the subarctic Pacific upon Northern Hemisphere glaciation—new evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers. Earth Planet. Sci. Lett. 351–352, 84–94 (2012).

    Article Google Scholar

  45. Lamy, F. et al. Five million years of Antarctic Circumpolar Current strength variability. Nature 627, 789–796 (2024).

    Article CAS Google Scholar

  46. Rae, J. W. B. et al. Overturning circulation, nutrient limitation, and warming in the glacial North Pacific. Sci. Adv. 6, eabd1654 (2020).

    Article CAS Google Scholar

  47. Abell, J. T. & Winckler, G. Long‐term variability in Pliocene North Pacific Ocean export production and its implications for ocean circulation in a warmer world. AGU Adv. 4, e2022AV000853 (2023).

    Article Google Scholar

  48. Kemp, A. E. S. & Villareal, T. A. High diatom production and export in stratified waters – a potential negative feedback to global warming. Prog. Oceanogr. 119, 4–23 (2013).

    Article Google Scholar

  49. Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4m (2020); https://www.eoas.ubc.ca/~rich/map.html

  50. Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. E. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dyn. Stat. Clim. Syst. 2, dzx002 (2017).

    Google Scholar

  51. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 883. Proc. ODP Init. Rep. 145, 121–208 (1993).

  52. Meyers, S. R. astrochron: A Computational Tool for Astrochronology http://cran.r-project.org/package=astrochron (2014).

  53. Rea, D. K., Basov, I. A., Janecek, T. R., Palmer-Julson, A. & Shipboard Scientific Party. Initial report: site 887. Proc. ODP Init. Rep. 145, 335–391 (1993).

  54. Tiedemann, R. & Haug, G. H. Astronomical calibration of cycle stratigraphy for site 882 in the northwest Pacific. Proc. ODP Sci. Res. 145, 283–292 (1995).

    Google Scholar

  55. Shackleton, N. J. & Opdyke, N. D. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat. Res. 3, 39–55 (1973).

    Article CAS Google Scholar

  56. Kranner, M., Harzhauser, M., Beer, C., Auer, G. & Piller, W. E. Calculating dissolved marine oxygen values based on an enhanced benthic foraminifera oxygen index. Sci. Rep. 12, 1376 (2022).

    Article CAS Google Scholar

  57. Kaiho, K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology 22, 719–722 (1994).

    Article CAS Google Scholar

  58. Raja, M. & Rosell-Melé, A. Appraisal of sedimentary alkenones for the quantitative reconstruction of phytoplankton biomass. Proc. Natl Acad. Sci. USA 118, e2014787118 (2021).

    Article CAS Google Scholar

  59. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article Google Scholar

  60. Keigwin, L. D. Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13, 323–339 (1998).

    Article Google Scholar

  61. Caballero-Gill, R. P., Herbert, T. D. & Dowsett, H. J. 100-kyr paced climate change in the Pliocene Warm Period, southwest Pacific. Paleoceanogr. Paleoclimatol. 34, 524–545 (2019).

    Article Google Scholar

  62. Patterson, M. O. et al. A southwest Pacific perspective on long-term global trends in Pliocene–Pleistocene stable isotope records. Paleoceanogr. Paleoclimatol. 33, 825–839 (2018).

    Article Google Scholar

  63. Tian, J., Wang, P., Cheng, X. & Li, Q. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison. Earth Planet. Sci. Lett. 203, 1015–1029 (2002).

    Article CAS Google Scholar

  64. Jian, Z. et al. Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 425–442 (2003).

    Article Google Scholar

  65. Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    Article CAS Google Scholar

  66. Herbert, T. D., Caballero-Gill, R. & Novak, J. B. A revised mid-Pliocene composite section centered on the M2 glacial event for ODP site 846. Climate 17, 1385–1394 (2021).

    Google Scholar

  67. Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article Google Scholar

  68. York, D., Evensen, N. M., Martı́nez, M. L. & De Basabe Delgado, J. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 72, 367–375 (2004).

    Article Google Scholar

  69. York, D. Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320–324 (1968).

    Article Google Scholar

  70. Wehr, R. & Saleska, S. R. The long-solved problem of the best-fit straight line: application to isotopic mixing lines. Biogeosciences 14, 17–29 (2017).

    Article Google Scholar

  71. Mahon, K. I. The new ‘York’ regression: application of an improved statistical method to geochemistry. Int. Geol. Rev. 38, 293–303 (1996).

    Article Google Scholar

  72. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article Google Scholar

  73. Novak, J., Caballero-Gill, R. P., Rose, R., Herbert, T. D. & Dowsett, H. J. Multiproxy paleoceanogrpahic dataset from ODP site 883 and 887 and compiled mid Piacenzian benthic foraminiferal stable carbon isotope data from 23 IODP/ODP/DSDP sites. PANGAEA https://doi.org/10.1594/PANGAEA.967342 (2024).

  74. Novak, J., Caballero-Gill, R. P., Rose, R., Herbert, T. D. & Dowsett, H. J. Data from ODP Leg 145 Sites 883, 887, compiled MPWP benthic stable carbon isotopes, and example code. figshare https://doi.org/10.6084/m9.figshare.25066535 (2024).

Download references

Isotopic evidence against North Pacific Deep Water formation during late Pliocene warmth (2024)
Top Articles
Latest Posts
Article information

Author: Zonia Mosciski DO

Last Updated:

Views: 6502

Rating: 4 / 5 (51 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Zonia Mosciski DO

Birthday: 1996-05-16

Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

Phone: +2613987384138

Job: Chief Retail Officer

Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.